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Abstract
An approach is proposed to determine the structure of a three-dimensional non-
crystalline object from a single two-dimensional x-ray scattering image. If x-
ray absorption is ignored, this method, unlike what has been reported in the
literature, always generates a structure of real electron density, even in the case
that the Ewald sphere curvature is large. In addition, if the original object is
thin, the reconstructed object is the integrated electron density of the original
one along a path which makes an angle with the incoming x-rays (z-axis) in
proportion to the maximum x-ray wavevector transfer magnitude along the axis,
revealing the object’s depth information. It is demonstrated mathematically that
the blurs or ripples associated with a reconstructed object are due to a resolution
function effect. Reconstructed structures of a hypothetical three-dimensional
object are shown to agree with the theoretical predictions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, there has been intense interest in reconstructing non-periodic two-dimensional
2D) and three-dimensional (3D) objects through their x-ray scattering intensities alone, using
dual-space iterative algorithms [1–7]. The importance of these research activities is due to the
fact that, unlike electrons, x-rays have large penetration power and are weakly scattered, and
therefore a true three-dimensional object can be reconstructed at a spatial resolution limited
only by the x-ray wavelength and the sample scattering power. It is expected that, with
strong enough incident x-ray intensity, structures of isolated proteins may be obtained [8],
and scientists may be able to observe a living cell at work [9].

With an area detector, the x-ray scattering intensity distribution is measured through a
series of images corresponding to different sample orientation angles. Nevertheless, due to
possible x-ray radiation damage, it may be impossible to obtain more than one image from the
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Figure 1. Schematic diagram to show the scattering geometry. The scattering wavevector transfer
is indicated by q.

same sample. In addition, if the sample structure varies with time, it is extremely desirable
to be able to monitor the instantaneous structure without rotating the sample. Therefore, it is
very important to know if the structure can be obtained through just one image. If the x-ray
wavelength is short enough so that the sample is considered thin, a corresponding 2D object
can be reconstructed [10]. 2D structures each determined from a 2D x-ray scattering image of
a 3D object at different sample rotation angles were obtained recently by Miao et al [11]. In
their work, the original object was thin and the Ewald sphere curvature was ignored. Chapman
et al [10] studied the Ewald sphere curvature effect and concluded that the obtained 2D electron
density structure must be, in general, complex since the basic scattering rule for a 2D object,
I (−qx ,−qy) = I (qx , qy), is violated, where qx and qy are the x-ray wavevector transfers along
the x-axis and y-axis, respectively. The complex electron density profile may make explaining
the object’s structure difficult, and confusion exists in literature as to how to use the obtained
complex object to infer the original structure [12].

In this paper, a different approach is developed in section 2 to reconstruct the original
object from a single 2D x-ray scattering image. The result shows that the reconstructed electron
density under the new approach is not only always positive if ripples are ignored and x-ray
absorption is negligible, but also gives information about the relative depth of the components
due to Ewald sphere curvature, yielding 3D structural information from 2D scattering data. In
section 3, a computer-simulated x-ray scattering experiment on a hypothetical three-sphere
structure is carried out to take a 2D x-ray scattering image, and the Fienup hybrid-input–
output (HIO) algorithm [13] is used to retrieve the original structure. The retrieved structures
are compared to the theory developed in section 2. In section 4, the traditional method to
reconstruct the structure (from a single 2D image) is analysed following the insight gained in
section 2. A conclusion is given in section 5.

2. Theory

On a single x-ray scattering image, as shown in figure 1, the x-ray wavevector transfer q
along the z-axis is, assuming that the incoming x-rays are along the positive z-direction,

qz = −k0+
√

k2
0 − q2

x − q2
y , where k0 = 2π/λ = |O A| = |O B| and λ is the x-ray wavelength.

Therefore, in general, the x-ray scattering structure factor of the object on that image does not
satisfy

F0(−qx,−qy, qz) = F∗
0 (qx, qy, qz), (1)

where the structure factor F0(q) = ∫
ρ0(r) exp(−iqr) dr with ρ0(r) the object’s electron

density at location r. Nevertheless, modified scattering structure factors can be defined
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as

F1(qx, qy) =
{

F0(qx, qy, qz); qy � 0

F∗
0 (−qx,−qy, qz); qy � 0

(2)

and

F2(qx, qy) =
{

F0(qx, qy, qz); qy � 0

F∗
0 (−qx,−qy, qz); qy � 0.

(3)

It is easy to verify that both the modified structure factors F1(qx, qy) and F2(qx , qy) satisfy
equation (1). Therefore, we use |F1(qx, qy)| and |F2(qx , qy)| to reconstruct the original object.

We need to investigate theoretically what electron density distributions can be obtained
from |F1(qx, qy)| and |F2(qx, qy)|. We define projection electron densities ρ1(x, y) and
ρ2(x, y) in such a way that the modified structure factors F1(qx, qy) and F2(qx, qy) are the
Fourier transforms of ρ1(x, y) and ρ2(x, y), respectively. Ignoring the Gibbs ripple effect, we
have

ρ1(x, y) = 2

π2

∫ ∫

3D object
ρ0(x ′, y ′, z′) dx ′ dy ′ dz′

∫ qx y,max

0

∫ √
q2

x y,max−q2
x

0
cos[qx(x ′ − x − x0)]

× cos[qy(y ′ − y − y0) + qz(z
′ − z0)] dqx dqy (4)

assuming that the detector is round. In equation (4), qxy,max is the maximum x-ray wavevector
transfer in the x–y-plane, and x0, y0, and z0 are translational shift parameters. Similarly,

ρ2(x, y) = 2

π2

∫ ∫

3D object
ρ0(x ′, y ′, z′) dx ′ dy ′ dz′

∫ qx y,max

0

∫ √
q2

x y,max−q2
x

0
cos[qx(x ′ − x − x ′

0)]
× cos[qy(y ′ − y − y ′

0) − qz(z
′ − z′

0)] dqx dqy. (5)

From equations (4) and (5), it is evident that since the electron density of the original object ρ0

is real, both the projection electron densities ρ1(x, y) and ρ2(x, y) are real.
To continue, we define the following resolution functions

H1(r) =
∫ qx y,max

0

∫ √
q2

x y,max−q2
x

0
cos(qx x) cos(qy y + qzz) dqx dqy, (6)

and

H2(r) =
∫ qx y,max

0

∫ √
q2

x y,max−q2
x

0
cos(qx x) cos(qy y − qzz) dqx dqy. (7)

Intuitively, if |qxy,maxx | � 1, due to the oscillation of cos(qx x) along the qx path, both
H1(r) and H2(r) are small. Similarly, if |qxy,max y| � 1, both H1(r) and H2(r) are small
at z = 0. In fact, at z = 0, if using a square area detector, the resolution function
H1(r) = sin(qx,maxx) sin(qy,maxy)(xy)−1, where qx,max and qy,max are the largest wavevector
transfers along the x-axis and y-axis, respectively. When qx,max and qy,max go to infinity,
H1(r) = π2δ(x)δ(y). Numerical studies show that, around its central peak, H1(r) can be
approximated by

H1(r) = C e−(xqx y,max/π)2−(yqx y,max/π−zqz,max/π)2

1 + [Q⊥z/(2π cos θ)]2
. (8)

In equation (8), qz,max = k0 −
√

k2
0 − q2

xy,max is the largest wavevector transfer magnitude along

the z-axis, tan θ = qz,maxq−1
xy,max, C is a constant unrelated to r, and Q⊥ = qxy,max sin θ +
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k0(1 − cos θ). If θ � 1, Q⊥ ≈ qz,max. Therefore, if (x ′ − x − x0, y ′ − y − y0, z′ − z0) is not
too far from (0, 0, 0), equation (4) becomes

ρ1(x, y) = 2C

π2

∫ ∫

sample
ρ0(x ′, y ′, z′)

× e−[(x′−x−x0 )qx y,max/π ]2−[(y′−y−y0)qx y,max/π−(z′−z0)qz,max/π ]2

1 + [Q⊥(z ′ − z0)/(2π cos θ)]2
dx ′ dy ′ dz′. (9)

Equation (9) indicates that if the original electron density ρ0(r) is always positive, then the
projection electron density ρ1(x, y) is also positive. In addition, equation (9) shows that if Q⊥
is small and qxy,max is large (compared with the inverse of the sample linear size), namely, the
sample is thin, ρ1(x, y) is just the original electron density integrated along the path of

z′ − z0 = (y ′ − y − y0)qxy,max/qz,max

x ′ = x + x0.
(10)

Similarly, the second projection electron density ρ2(x, y) is the original electron density
integrated along the path of

z′ − z′
0 = −(y ′ − y − y ′

0)qxy,max/qz,max

x ′ = x + x ′
0.

(11)

Therefore, ρ1(x, y) and ρ2(x, y) give depth information for the original object. Far away from
its central peak, H1(r) has ripples, both positive and negative, especially when r is close to the
line defined by z = yqxy,max/qz,max(x = 0).

3. Computer-simulated experiment and object retrieval

To demonstrate using the proposed modified structure factor amplitudes |F1(qx, qy)| and
|F2(qx, qy)| to reconstruct the original object, a computer-simulated experiment is set up. We
use an area detector which had 3001 by 3001 number of pixels and an area of 300 mm by
300 mm. X-rays of wavelength of 15 Å were used. The sample–detector distance is 54.6 mm,
and the beam stop, with a radius of 0.5 mm, is located 50 mm after the sample. The incoming
x-rays are assumed to be polarized along the x-axis and to travel along the z-axis. The sample
is composed of three solid spheres of radius R. The spheres have an electron density of one
electron per Å

3
. The coordinates of the sphere centres are (3R, 0, 0), (0, 3R, 0), and (0, 0, 3R),

where R is set at 30 Å. Since the scattering process is a quantum process, the number of
scattered x-rays follows a Poisson distribution, and therefore Poisson noises are generated in
the data simulation. The scattering intensity is sampled in a grid of 81 × 81 in reciprocal
space at an interval of 0.004 27 Å

−1
in both qx and qy , giving a hypothetical unit cell size of

1470×1470 Å
2
. The support is set to be the centre one seventh of the unit cell along each axis.

We take qxy,max = 0.171 Å
−1

which yields qz,max = 0.0365 Å
−1

. Figure 2 shows simulated
scattering data which have a signal-to-noise ratio (SNR) of 39. The scattering intensities are
normalized to one solid radian. Careful examination of the data indicates that the scattering
intensities are not centrosymmetric in the qx–qy-plane.

We carry out 20 HIO runs on the data and pick the best reconstructed object from the 20
runs with the HIO feedback parameter βHIO = 1. We use 800 iterations for each run. There
is no non-negative electron density constraint in the HIO procedures. We know that with or
without scattering data noise, the reconstructed object may be stable along the iteration path
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Figure 2. The computer-simulated scattering intensities per solid radian, after dividing the x-ray
polarization factors, for the three-solid-sphere object over each of the 81 by 81 grids in reciprocal
space. The incoming x-rays were polarized along the x-axis.

but may not be faithful. In order to select the faithfully reconstructed objects, we used the
traditional crystallographic R-factor defined as

Rcryst =
(∑

||FHIO| − |Fsim||
)/ (∑

|Fsim|
)

, (12)

and the electron density fluctuation parameter defined as

ρfluct =
N∑

j=1, j∈S

∑
4 nearest
neighbour

|ρneighbour − ρ j |/(4N). (13)

In equation (12), FHIO and Fsim are the structure factors obtained from the HIO procedure and
the simulated experiment, respectively. Note that in equation (12), in calculating FHIO, the
electron density is set to zero outside the support. In equation (13), ρ j is the electron density
at grid j on the support S, and N is total number of grids on the support (strictly speaking, j
does not go to the border of the support and N is the total number of grids on the support minus
the number of grids on the support border). In addition, we define a parameter to balance the
measures provided by Rcryst and ρfluct,

η = 〈Rcryst〉 − Rcryst

〈Rcryst〉 + 〈ρfluct〉 − ρfluct

〈ρfluct〉 , (14)

where 〈· · ·〉 indicates the averages of the results from the 20 HIO runs. We picked the
reconstructed objects using the following criteria: (1) Rcryst < 〈Rcryst〉, (2) ρfluct < 〈ρfluct〉,
and (3) η is among the largest. We show, in figure 3(a), a reconstructed projection electron
density from |F1|. The reconstructed object has the largest η among the 20 HIO runs. The
object has Rcryst = 0.068, ρfluct = 4.3 Å

−2
, and η = 0.23. We carried out another 20

5
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Figure 3. HIO procedure reconstructed 2D objects from a single 2D x-ray scattering image on a
three-sphere object with the structure factor amplitudes constructed according to (a) equation (2),
and (b) equation (3). The spheres are located at (90 Å, 0, 0), (0, 90 Å, 0), and (0, 0, 90 Å).
Each grid step represents 4.54 Å. There is no non-negative constraint in the HIO procedures.

The HIO obtained parameters are: (a) Rcryst = 0.068, ρfluct = 4.3 Å
−3

, and η = 0.23.

(b) Rcryst = 0.061, ρfluct = 3.7 Å
−2

, and η = 0.43.

HIO runs, using |F2|, and we show a plot of the best reconstructed object in figure 3(b)
(Rcryst = 0.061, ρfluct = 3.7 Å

−2
, η = 0.43). In figures 3(a) and (b), the original grid is divided

into four equally spaced smaller grids along each axis, and therefore each grid step in the figures
represents 4.54 Å. The figures show that the reconstructed objects resemble the original one,
but with a slight relative move along the y-axis for the bottom right component, indicating that
the component does not have the same location along the z-axis as the other two. For the bottom
right component, between its locations in figures 3(a) and (b), it moves about 6.5±1 steps along
the y-axis, namely, 29.5 ± 4.5 Å, relative to the other two. Using equations (10) and (11), we
obtain that the difference in the locations along the z-axis is 69±11 Å, which is not that far from
the real difference of 90 Å. A more accurate value can be achieved through sampling the data
up to a higher wavevector transfer. This simple example shows that not only is the reconstructed
electron density profile all positive (or all negative), given that the original electron density is

6
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positive, but also that the method provides a way to obtain component locations along the z-
axis, in addition to their x–y locations. The accuracy in the z-axis location determination is
proportional to q−1

xy,maxqz,max.
What happens to the reconstructed object if the sphere originally located at (0, 0, 3R) is

relocated to (0, 0, L) with L > 2π/qz,max = 172 Å for qz,max = 0.0365 Å
−1

? This is the case
when the object is thick. Let us set L = 400 Å and make 20 HIO runs to reconstruct ρ1(x, y),
with the same HIO related parameter values as those for figures 3(a) and (b), except that the
support is set at the centre one third of the hypothetical unit cell along each coordinate. The
scattering data has an SNR of 38. The results reveal that if there is no non-negative electron
density constraint, Rcryst is quite small, with a mean of 0.082 and a standard deviation of 0.0041.
Since L is large, no matter what the shift z0 is, at least one of the spheres is at the resolution
function tail over which equation (8) is invalid and a resolution function ripple effect occurs.
The ripples can be both positive and negative, and therefore, the reconstructed object contains
both positive and negative electron densities. We pick, out of the 20 runs, the one with the
largest η and show the reconstructed object in figure 4(a) which has η = 0.13, Rcryst = 0.076,

and ρfluct = 1.6 Å
−2

. Note that most results from the 20 HIO runs do not resemble the original
object at all, although their Rcryst are quite small. Now we enforce the non-negative electron
density constraint. We have found that Rcryst becomes much larger and has a mean of 0.32 and a
standard deviation of 0.019. Most of the reconstructed objects, however, do show recognizable
spheres, such as that shown in figure 4(b), which has Rcryst = 0.31, ρfluct = 1.3 Å

−2
, and

η = 0.14. In figure 4(b), as expected, the lower right component not only moves downwards
along the y-axis, but also to the left slightly, agreeing with the resolution function behaviour at
its tail revealed by numerical computation on equation (6). Note that the much smaller ρfluct in
figures 4(a) and (b) than those in figures 3(a) and (b) are primarily due to the difference in the
support region sizes.

4. Analysis of traditional approach

Follow the analysis developed in section 2, for the traditional approach, the responsible electron
density for the measured scattering intensity is

ρ(x, y) = 1

π2

∫ ∫

3D object
ρ0(x ′, y ′, z′) dx ′ dy ′ dz′HT(x ′ − x − x ′′

0 , y ′ − y − y ′′
0 , z′ − z′′

0),

(15)

where the complex resolution function is defined as

HT(r) =
∫ qx y,max

0

∫ √
q2

x y,max−q2
x

0
cos(qx x) cos(qy y)e−iqz z dqx dqy. (16)

In equation (15), x ′′
0 , y ′′

0 , and z ′′
0 are object translational shift parameters. When around its

major peaks, our numerical calculations show that the complex resolution function can be
approximated by

HT(r) = e−(x2+y2)q2
x y,max/c2

0 [CT,Re−(zqz,max/c1)
2 − iCT,I sin(c2zqz,max)], (17)

where CT,R = πq2
xy,max/4, CT,I = πqz,max(k0 − 2qz,max/3)/(4c2), c0 = 2.7, c1 = 2.4, and

c2 = 0.61. Therefore the real and imaginary parts of the electron density are

ρR(x, y) = CT,R

π2

∫ ∫

3d object
ρ0(x ′, y ′, z′) dx ′ dy ′ dz′e−(x2+y2)q2

x y,max/c2
0−(zqz,max/c1)

2
, (18)

7
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Figure 4. HIO procedure reconstructed 2D objects from a single 2D x-ray scattering image on a
three-sphere object with the structure factor amplitudes constructed according to equation (2). The
spheres are located at (90 Å, 0, 0), (0, 90 Å, 0), and (0, 0, 400 Å). Each grid step represents 4.54 Å.

(a) No non-negative electron density constraint. η = 0.13, Rcryst = 0.076, and ρfluct = 1.6 Å
−2

.

(b) With non-negative electron density constraint. Rcryst = 0.31, ρfluct = 1.3 Å
−2

, and η = 0.14.

and

ρI (x, y) = CT,I

π2

∫ ∫

3D object
ρ0(x ′, y ′, z′) dx ′ dy ′ dz′e−(x2+y2)q2

x y,max/c2
0 sin(c2zqz,max). (19)

Note that if qz,maxq−1
xy,max is not large, the half-width at half-maximum (HWHM) for H1(r)

along the z-axis around its main peak is about 2πq−1
z,max, as shown in equation (8). The real

part of the electron density ρR(x, y) is the integral of the original object’s electron density
along a line which is parallel to the z-axis. However, the HWHM for the real part of the
complex resolution function HT(r) along the z-axis is only 2.4 q−1

z,max, significantly smaller
than 2πq−1

z,max. Therefore, even if the original object can be considered thin under the method
proposed in section 2, it may be too thick for the traditional method using the real part of the
reconstructed structure. To prove our understanding, we carry out ten HIO runs on the scattering

8
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Figure 5. Plots of the resolution functions associated with ρR(x, y) and ρ3(x, y), along the z-axis.

qz,max = 0.036 Å
−1

, qxy,max = 0.17 Å
−1

, and the x-ray wavelength is 15 Å.

intensity from a single x-ray scattering image on the three-solid-sphere object described in
section 3, without scattering noise. The spheres are located at (3R, 0, 0), (0, 0, 3R), and
(0, 0, 3R), with the radius R set at 30 Å. The HIO related parameter values and measurement
grid sizes and numbers are the same as those in section 3. The x-ray wavelength is 15 Å and
the simulated experiment setup is the same as that described in section 3. In seven out of the
ten runs, the real parts give blurred images for the sphere located at (0, 0, 3R), indicating that
the original object is too thick. Indeed, since qz,max = 0.0365 Å

−1
, c1q−1

z,max = 65.8 Å, which is
less than the object thickness of about 90 Å + 2R. For comparison, we carry out ten HIO runs
with the modified structure factor F1(qx, qy) proposed in section 2, using the same simulated
scattering data. All of the reconstructed objects are clear, without much blur, indicating that
the object was thin. Furthermore, we can see from equations (18) and (19) that the modulus
of the complex electron density ρ(x, y) may give a false structure even if the original electron
density is of the same sign. Moreover, if the scattering length can be both positive and negative,
as in the cases of neutron scattering and the non-Bragg scattering from substitution disorder in
a crystal [14], the modulus does not predict the original structure faithfully.

What may be more useful is to use

ρ3(x, y) = |ρR(x, y)| + |ρI (x, y)|, (20)

to infer the original structure, in the case that the scattering length is of the same sign, although
there is no depth information gained. From equations (18) and (19), we have

ρ3(x, y) = 1

π2

∫ ∫

3D object
ρ0(x ′, y ′, z′) dx ′ dy ′ dz′e−(x2+y2)q2

x y,max/c2
0

× [CT,Re−(zqz,max/c1)
2 + CT,I | sin(c2zqz,max)|]. (21)

We plot, in figure 5, the resolution functions along the z-axis associated with ρR(x, y) and
ρ3(x, y). In the figure, we use qz,max = 0.036 Å

−1
, qxy,max = 0.17 Å

−1
, and an x-ray

wavelength of 15 Å. The resolution function along the z-axis associated for ρ3(x, y) has an
HWHM of 1.37πq−1

z,max, which is much larger than that associated with ρR(x, y).

9
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5. Conclusion

In this paper we have suggested a way to determine the structure of a 3D object from its 2D
x-ray scattering image even when the Ewald curvature is large. We showed mathematically that
under the method proposed in section 2, the reconstructed object is the original one convoluted
with a real resolution function. When the object is thin, the reconstructed electron density is the
original one integrated along a path which makes an angle with the incoming x-rays described
by equation (10) or (11). We showed that the relative move of a component, in the reconstructed
projection electron density profiles ρ1 and ρ2 which correspond to, respectively, using the
upper and lower half planes of the scattering data, gives the information about its relative
location along the z-axis. Reconstructed objects from data collected from computer-simulated
experiments on a three-uniform-sphere sample were shown to agree with our understanding.
In addition, we analysed the traditional reconstruction method and reached the conclusion that,
with Ewald sphere curvature effects, the real part of the reconstructed complex electron density
allows a sample thickness much smaller than that allowed from the method we proposed in this
paper.
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